anonymous
  • anonymous
find the domain of the composite function f o g f(x) = x+4; g(x)= 9/x+6
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
i think it is x not equal to -6
amistre64
  • amistre64
the domain of the function f(g(x)) doesnt change any from it component parts. f(x) can use anything ; but g(x) cant use -6 so the domain of the composite is everything but "-6"
anonymous
  • anonymous
yay my answer is right:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
g(f(x)) would give us an additional ixnay for x... in that we might not be able to use -10
anonymous
  • anonymous
yes ..in the case of g o f
anonymous
  • anonymous
it is x not equal to 10
amistre64
  • amistre64
if we were to consider functions that would perhaps"cancel"out an inapproriate domain, then the original domains would still take precident
amistre64
  • amistre64
your gonna tell me im wrong..aintcha :)
anonymous
  • anonymous
so ?? what say tamas?
anonymous
  • anonymous
If \[f(x)=x+4\textrm{ and }g(x)=\frac{9}{x+6}\] then \[(f\circ g)(x)=f(g(x))=\frac{9}{x+6}+4.\] So \[D_{f\circ g}=\mathbb{R}\backslash\{-6\}.\]
anonymous
  • anonymous
I concur with gorbe.tamas.

Looking for something else?

Not the answer you are looking for? Search for more explanations.