anonymous
  • anonymous
What must be the value of b so that the motion of an object given by the equation D2x + bDx + 9x = 0 is critically damped?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Thats D^2x+bDx+9x=0
anonymous
  • anonymous
D^2x+bDx+9x=0 can be written as x"+bx'+9x=0 so we solve for the corresponding quadratic equation: r^2+br+9=0
anonymous
  • anonymous
the roots are r1 = -b+sqrt(b^2-4ac)/2a and r2 = -b-sqrt(b^2-4ac)/2a for a critically damped system, b^2 = 4ac or b^2 = 4*1*9=36 or b =6

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
rather, b = + or - 6
anonymous
  • anonymous
As the equation is quadratic, i.e.it is of degree 2, the equation has 2 roots which are '+6' & '-6'
anonymous
  • anonymous
good work aditya!
anonymous
  • anonymous
Thank you! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.