anonymous
  • anonymous
A ladder on a fire truck can be extended to a maximum length of 21 m when elevated to its maximum angle of 70°. The base of the ladder is mounted on the truck 2.15 m above the ground. How high above the ground will the ladder reach? Round to the nearest tenth.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
To find the vertical distance the ladder stretches, draw a right triangle. The hypotenuse will be 21 meters and the angle between the hypotenuse and the truck will be 70 degrees. You have to find the opposite side of the triangle, so use sine (SOH). sin(70) = b / 21 --> b = 21sin(70) = 19.734 m. Add this to the 2.15 mount to get 21.889 meters for an answer.
anonymous
  • anonymous
Thank

Looking for something else?

Not the answer you are looking for? Search for more explanations.