anonymous
  • anonymous
when 10^93-93is expressed as a single whole #, what is the sum of its digits?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I think the answer is 826. 10^93=1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 10^93-93=999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999907 9*91=819+7=826.
anonymous
  • anonymous
!0^93 is 1 followed by 93 zeros. Subtract 93 from that, and you have 91 nines, 1 zero and 1 seven. So your answer = 91*9 + 7 = 826.

Looking for something else?

Not the answer you are looking for? Search for more explanations.