anonymous
  • anonymous
Find the arc length of the graph of the function from x=0 to x=2. F(x) = ln(x+1).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
hello
anonymous
  • anonymous
sjin, the arc length of a function is given by\[s=\int\limits_{x_1}^{x_2}\sqrt{1+(y')^2}dx\]after considering a differential of arc length using Pythagoras' Theorem. The problem here will be with the integration.
anonymous
  • anonymous
\[y=\log (x+1) \rightarrow y'=\frac{1}{x+1}\]so\[s=\int\limits_{0}^{2}\sqrt{1+\left( \frac{1}{x+1} \right)^2}dx=\int\limits_{0}^{2}\frac{\sqrt{(x+1)^2+1}}{x+1}dx\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
You're going to have to make a few substitutions along the way to solve this. You should start with \[u=x+1\]to obtain\[\int\limits_{u_1}^{u_2}\frac{\sqrt{u^2+1}}{u}du\]then\[w=u^2+1\]to obtain\[\frac{1}{2}\int\limits_{w_1}^{w_2}\frac{w^{1/2}}{w-1}dw\]and finally, \[\zeta = w^{1/2}\]to obtain\[\int\limits_{\zeta_1}^{\zeta_2}\frac{\zeta^2}{\zeta^2-1}d \zeta\]The last integrand may be written\[\frac{\zeta^2}{\zeta^2-1}=\frac{\zeta^2-1+1}{\zeta^2 -1}=1+\frac{1}{\zeta^2-1}=1+\frac{1}{2}\frac{1}{\zeta -1}-\frac{1}{2}\frac{1}{\zeta +1}\]
anonymous
  • anonymous
I would have banged out a sinh sub, but I haven't looked too closely.
anonymous
  • anonymous
After solving the final integral form, and back-substituting, you obtain,\[s=\sqrt{(x+1)^2+1}+\frac{1}{2}\log \frac{\sqrt{(x+2)^2+1}-1}{\sqrt{(x+1)^2+1}+1}|_0^2\]
anonymous
  • anonymous
with\[s=\sqrt{10}-\sqrt{2}+\frac{1}{2}\log \frac{\sqrt{10}-1}{\sqrt{10}+1}-\frac{1}{2}\log \frac{\sqrt{2}-1}{\sqrt{2}+1}\]
anonymous
  • anonymous
As INewton mentioned, there are other avenues for substitution.
anonymous
  • anonymous
thank you so much!
anonymous
  • anonymous
np
anonymous
  • anonymous
Indeed, I'm pretty impressed you typed all that LaTeX on what is a pretty poor engine on this site.
anonymous
  • anonymous
I'm impressed too. I feel exhausted.

Looking for something else?

Not the answer you are looking for? Search for more explanations.