Find the number c that satisfies the conclusion of Rolle's Theorem. f(x) = x3 - x2 - 2x + 8 [0, 2] ...c=?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the number c that satisfies the conclusion of Rolle's Theorem. f(x) = x3 - x2 - 2x + 8 [0, 2] ...c=?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

If a real-valued function ƒ is continuous on a closed interval [a, b], differentiable on the open interval (a, b), and ƒ(a) = ƒ(b), then there exists a c in the open interval (a, b) such that\[f'(c)=0\]That's Rolle's Theorem. All you need to do is take the first derivative of what you've got, take the function of c, set it to zero and solve. So,\[f'(x)=3x^2-2x-2 \rightarrow f'(c)=3c^2-2c-2:=0\]You need to find c such that\[3c^2-2c-2=0\]
When you solve for c, you'll end up with two solutions,\[c=\frac{1 \pm \sqrt{7}}{3}\]Only one of them lies in the interval [0,2], namely,\[\frac{1+\sqrt{7}}{3}\]The other one, you have to reject.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question