Solve the differential equation: (x * y' - 1) * ln(x) = 2 * y

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Solve the differential equation: (x * y' - 1) * ln(x) = 2 * y

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

it's already been differentiated?
i dont understand what you mean.
nvm...do you know implicit differentiation?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yeah
ok that makes it easier...I'll calc it in a second
substituting \[x := e^t\] seems to make it a lot easier
the derivative of ln(x) is 1/x, but we have to do product rule
sorry man not sure on this one
and gotta get back studying for lin alg final -___-
try www.wolframalpha.com for an answer
oh ok thanks for your help :) @ nowhereman: if i do that i get y'*(e^t)*t=2y
I got \[(\frac{dy}{dt} - 1)t = 2y\]
assuming the function is analytic, that can be solved with power series
would i be able to have \[(dy/dt) - (2/t)y=1\] and then do an integrating factor:\[e^(intergral of (-2/t))\]?
no, I don't see how that would work.
... i dont understand what i should do then
umm and i dont get how you got the dt part
I used the chain rule \[\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question