anonymous
  • anonymous
Check if the function is continuous.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[f(x) = \left\{ {{{x^2 + 6x - 16} \over {x^2 + x -6}}, x \neq 2} \right\}\] \[{7x - 4}, x =2\]
anonymous
  • anonymous
I can't order the brackets
myininaya
  • myininaya
x^2+x-6=(x+3)(x-2) x^2+6x-16 doesn't have either factor so the limit does not exsit at -3 and 2 so the function is not continuous at either x

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

myininaya
  • myininaya
oh x=2 is defined for 7x-4
myininaya
  • myininaya
still since the limit doesn't exist at x=2 then f is not continuous there
anonymous
  • anonymous
yeap. sorry for that.
anonymous
  • anonymous
Oh! OK! Thanks.
myininaya
  • myininaya
all you have to do is make sure the limit exists and the limx->af(x)=f(a) then f is continuous at x=a
nikvist
  • nikvist
\[\lim_{x\rightarrow 2}f(x)=\lim_{x\rightarrow 2}\frac{x^2+6x-16}{x^2+x-6}=\lim_{x\rightarrow 2}\frac{(x+8)(x-2)}{(x+3)(x-2)}=\lim_{x\rightarrow 2}\frac{x+8}{x+3}=2\] \[f(2)=7\cdot 2-4=10\] \[\lim_{x\rightarrow 2}f(x)\neq f(2)\Rightarrow f(x)\quad not\enspace continuous\]
anonymous
  • anonymous
Thanks!

Looking for something else?

Not the answer you are looking for? Search for more explanations.