anonymous
  • anonymous
Please help with Trig Identities... tried it, but continued to get stuck at the end... Prove by working one side: (cos x/ 1+ sin x) - ( 1-sin x/ cos x)= 0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
cos(x)/(1+sin(x)) ?? is that corrrect?
anonymous
  • anonymous
yes
amistre64
  • amistre64
id assume yes, since cos(x)/1 would be futile :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
add the right "term" to the right side of the (=) for starters
amistre64
  • amistre64
cos x 1-sin x -------- = ------- 1+sin cos
amistre64
  • amistre64
the RHS = sec - tan
anonymous
  • anonymous
not = it is -...... it equals 0
amistre64
  • amistre64
you should use algebraic techniques to "prove" the statement. All I did was move -((1-sin)/cos) to the other side for the moments :)
amistre64
  • amistre64
if we cross multiply we get: cos^2 = (1-sin)(1+sin)
anonymous
  • anonymous
i dont understand... im so confused
amistre64
  • amistre64
cos^2 = 1 - sin^2 which is true
anonymous
  • anonymous
yes
amistre64
  • amistre64
are you trying to just work one side and not manipulate it to your whim?
anonymous
  • anonymous
yes only working one side to prove the other
amistre64
  • amistre64
you could try decomposing fractions..... maybe if you want to try that way
anonymous
  • anonymous
i ended up at: (1- sin ^2 x - 1- sin x)/ cos x
amistre64
  • amistre64
cos 1-sin -------- - ------- = 0 1+sin cos ok....yeah, get like denominators and such...same thing I did pretty much: cos^2 - (1-sin^2) --------------- = 0 cos(1+sin)
amistre64
  • amistre64
now we see that cos^2 - (cos^2) = 0 so that whole thing is 0
amistre64
  • amistre64
do you see it?
anonymous
  • anonymous
yes, thank you
amistre64
  • amistre64
how did you get to this? (1- sin ^2 x - 1- sin x)/ cos x
anonymous
  • anonymous
because cos ^2 = 1 - sin ^2
anonymous
  • anonymous
thank you for helping me
amistre64
  • amistre64
youre welcome :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.