How would you write down an integral for the volume of the section of a solid sphere x^2+y^2+z^z<=2 that lies in the first octant and above the plane z=1 in cylindrical coordinates? I know that x=rcosTHETA, y=rsinTHETA and z=z and how to set up a general integral, but not a bounded one...

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

How would you write down an integral for the volume of the section of a solid sphere x^2+y^2+z^z<=2 that lies in the first octant and above the plane z=1 in cylindrical coordinates? I know that x=rcosTHETA, y=rsinTHETA and z=z and how to set up a general integral, but not a bounded one...

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I also know that dV=rdzdrdTHETA
So far I have z bounded as 0(lowerbound) and sqrt(2-r^2)(upperbound), THETA 0(lowerbound) and .5pi(upperbound) and r as 1(lowerbound) and sqrt(2)(upperbound) Please help! I'm really trying to solve this and not wait for an answer!
*waiting

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question