anonymous
  • anonymous
does anyone know how to find the integral of ln(2x+1)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Make a substitution of u=(2x+1), find du and use integration by parts.
anonymous
  • anonymous
so i end up wiht an integral of 1/2ln(u).du, but then what?
anonymous
  • anonymous
u=2x+1 then du=2dx then dx = du/2, so, letting your integral be I,\[I=\frac{1}{2}\int\limits_{}{}\ln u du\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[I=\frac{1}{2}\int\limits_{}{}\ln w dw\]I've just made a switch on the dummy variable since I want to use convention to integrate with IBP, and this convention uses u.
anonymous
  • anonymous
yeah, i used y for the same reason
anonymous
  • anonymous
\[ u=\ln w \rightarrow du = \frac{dw}{w}\]and\[dv=dw \rightarrow v=w\]Then\[2I=\ln w .w-\int\limits_{}{}w \frac{dw}{w}=w \ln w - w + c\]Since \[w=2x+1\]\[2I=(2x+1)\ln (2x+1) -(2x+1)+c\]Divide by 2 to get I.
anonymous
  • anonymous
yeah, thats what i got, teh answer in the back of my text book gives \[1/2(2x+1)\ln (2x+1)-x+C\] but i guess they just expanded the last (2x+1)/2 and included the 1/2 with C
anonymous
  • anonymous
most likley

Looking for something else?

Not the answer you are looking for? Search for more explanations.