Solve sinx=x^2 correct to four decimals using Newton's method with x sub zero=1.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Solve sinx=x^2 correct to four decimals using Newton's method with x sub zero=1.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Newton's method was developed to find the roots of a function (i.e. what f(x)=0). As such, when you have something like you have, you need to put it in that form first. So, sin(x) =x^2 then f(x):=sinx-x2=0. You can now proceed. \[x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)} \rightarrow x_{n+1}=x_n-\frac{\sin x_n - x_n^2}{\cos x_n -2x_n}\]
So,\[x_1=1-\frac{\sin(1)-(1)^2}{\cos(1)-2(1)} \approx 0.891395995\]and this number becomes your second input, and you keep going (technically, forever).
\[x_2=0.891395995-\frac{\sin (0.891395995)-(0.891395995)^2}{\cos(0.891395995)-2(0.891395995)}\]\[\approx 0.876984844\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Mathematica spits a terminating output of about 0.8767262153950624.
The other solution is x=0.

Not the answer you are looking for?

Search for more explanations.

Ask your own question