anonymous
  • anonymous
Find f'(x), f(x) = ((3x - 5) / (2x + 1))^3
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
for h(x) = f(x)/g(x) use the quotient rule [f'(x)g(x) - g'(x)f(x)]/g'(x)^2. Use the chain rule to evaluate g(x).
anonymous
  • anonymous
I get up here: \[3{{(3x - 5) \cdot 2 - (2x + 1) \cdot 3} \over (2x + 1)^2}^2\]
anonymous
  • anonymous
ah sorry misread your function.... :/

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ahh, in the denominator is g'(x)^2 ? that's one of my mistakes
anonymous
  • anonymous
this is a really good tutorial: http://tutorial.math.lamar.edu/Classes/CalcI/ProductQuotientRule.aspx
anonymous
  • anonymous
ok.
anonymous
  • anonymous
what's the answer? (-13 / (2x + 1))^3 ?
anonymous
  • anonymous
or, 3(-13 / (2x + 1))^2
anonymous
  • anonymous
well I haven't solved it all the way through, but I would simply it to \[(3x-5)^{3}/(2x+1)^{3}\] then use the chain rule to find the derivatives of the numerator and denominator, then use the quotient rule to find the final answer.

Looking for something else?

Not the answer you are looking for? Search for more explanations.