anonymous
  • anonymous
A trigonometric question: On an ABC triangle , the edges are a, b and c. (b-c)/(b+c)=1/(root3) m(A)=60 degree angle what is angle of m(B) ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
if its a right triangle, then the m(B) will equal 30 degrees. if its not a right triangle, then a picture would be helpful
anonymous
  • anonymous
There is no given shape.Thanks anyway.
anonymous
  • anonymous
Answer is equal 105 degrees.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
then you could do it the hard way by making a system of equations: b - c = 1 b + c = sqrt(3) and finding your b and c....
amistre64
  • amistre64
then use the law of cosines to find "a" and the law of sines to find all your angles
amistre64
  • amistre64
b = 1+c (1+c) +c = sqrt(3) 1 + 2c = sqrt(3) 2c = sqrt(3)-1 c = (sqrt(3)-1)/2; b = (1 + sqrt(3))/2
anonymous
  • anonymous
I found a=6 then I found , 12/sqrt(3)=(sqrt(3)-1)/sin(B) But couldn't go further
amistre64
  • amistre64
if your a=6 is good; then: sinA sinB) ---- = ----- a b sinB = b sin(A)/a
amistre64
  • amistre64
sinB = [ (1 + sqrt(3))/2 ] [sqrt(3)/2] / 6 sinB = (sqrt(3) +3)/24
amistre64
  • amistre64
sinB = sqrt(3)/24 + 1/8
amistre64
  • amistre64
the sin inverse funtion will give you one angle for that taio; but you have to be aware that 2 angles are possible with a positive sin.
amistre64
  • amistre64
taio means ratio..... somehow :)
anonymous
  • anonymous
Prof ,My problem is how can i turn this to degree. :)
amistre64
  • amistre64
with the sin inverse function on a calculator.
anonymous
  • anonymous
I got it , sin inverse function , i will try thanks :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.