Factor f(x) = x^4 + 5x^2 - 14 completely.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Factor f(x) = x^4 + 5x^2 - 14 completely.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

let y = x^2 ; it won't factor any further than two quadratics in y.
The answer is supposed to look something like (this probably isnt the answer but for example) : \[(x - \sqrt{7})(x - \sqrt{7})(x + \sqrt{2}i)(x- \sqrt{2}i)\]
Im not sure how to solve for it this way :(

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

If you go that far, then so be-it. HOWEVER, if you want it in that form (I normally don't) who am I to stop you. First, factor f(x) into two quadratics: Let y = x^2 => f(x) = y^2 + 5y - 14 = (y+7)(y-2) => f(x) = (x^2+7)(x^2-2) Then you can factorise these (well, if you call using imaginary numbers factorising :@)
I got \[(x + \sqrt{7}i)(x-\sqrt{7}i)(x+\sqrt{2})(x-\sqrt{2})\] does that seem right you?
I got \[(x + \sqrt{7}i)(x-\sqrt{7}i)(x+\sqrt{2})(x-\sqrt{2})\] does that seem right you?

Not the answer you are looking for?

Search for more explanations.

Ask your own question