anonymous
  • anonymous
Can anyone help me integrate e^-(x+y) for x,y>0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits_{?}^{?}e^udu = e^-(x+y) + C\]\[\int\limits_{?}^{?}\int\limits_{?}^{?}e^(-x-y)dxdy\], let u = -x-y, and take the partial derivative wrt x so du = -1\[\int\limits_{?}^{?}-\int\limits_{?}^{?}e^ududy\] \[\int\limits-e^(-x-y)dy\]. Now let u = -x-y and take the partial wrt y, du=-1 so \[\int\limits_{?}^{?}e^udu=e^-(x+y) + C\]
anonymous
  • anonymous
you can do either dy or dx first, but it should still come out the same. Just remember that the u sub eliminates the second variable in du, because the partial derivs treat the other variable as a constant. Kind of like subbing u = 2x+3, du = 2dx, but in this here it's with x and y
anonymous
  • anonymous
I think I get it. That subbing makes me dizzy but it'll catch on. Thanks.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
just remember, when subbing with two or more variables, your du's consist of partial derivatives.
anonymous
  • anonymous
Thx

Looking for something else?

Not the answer you are looking for? Search for more explanations.