Can anyone help me integrate e^-(x+y) for x,y>0

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Can anyone help me integrate e^-(x+y) for x,y>0

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\int\limits_{?}^{?}e^udu = e^-(x+y) + C\]\[\int\limits_{?}^{?}\int\limits_{?}^{?}e^(-x-y)dxdy\], let u = -x-y, and take the partial derivative wrt x so du = -1\[\int\limits_{?}^{?}-\int\limits_{?}^{?}e^ududy\] \[\int\limits-e^(-x-y)dy\]. Now let u = -x-y and take the partial wrt y, du=-1 so \[\int\limits_{?}^{?}e^udu=e^-(x+y) + C\]
you can do either dy or dx first, but it should still come out the same. Just remember that the u sub eliminates the second variable in du, because the partial derivs treat the other variable as a constant. Kind of like subbing u = 2x+3, du = 2dx, but in this here it's with x and y
I think I get it. That subbing makes me dizzy but it'll catch on. Thanks.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

just remember, when subbing with two or more variables, your du's consist of partial derivatives.
Thx

Not the answer you are looking for?

Search for more explanations.

Ask your own question