suppose the amount of radioactive substance left after t years is given by A(t)=50e^(-0.0125t).Find the half life of this radioactive substance

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

suppose the amount of radioactive substance left after t years is given by A(t)=50e^(-0.0125t).Find the half life of this radioactive substance

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

The half-life is defined to be the amount of time needed for half the original amount to decay. The original amount is found when t = 0 (i.e. from when we start measuring). At t=0, A(0)=50...so this is your initial amount. At time t = u, half of the original amount will have decayed. So you'd have at this time, 25=50e^(-0.0125u) ---> 1/2=e^(-0.0125u) Take the natural log of both sides:\[\ln 1/2 = \ln (e^{-0.0125u}) \rightarrow -\ln 2 = -0.0125u \rightarrow u = \frac{\ln 2}{0.0125}\]i.e.\[u=8 \ln 2\]years. This is your half-life.
so the half life is 8 ln 2 years?
Yes. About 5.5yrs.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

thanks again

Not the answer you are looking for?

Search for more explanations.

Ask your own question