find the domain Q(y)=sqrt (y^2+1) - cuberoot (1-y)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

find the domain Q(y)=sqrt (y^2+1) - cuberoot (1-y)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Domain of y is all real numbers. Explanation: since the quantity y^2 is always positive ((y^2)+1)^(1/2) is always defined and since the a cube root is defined along all reals y can take any value. There does not exist a value of y that will make the function undefined
and what about in this case 4 / (x-9) - sqrt (x^3 -36)
x definitely can't equal 9 (since you would be dividing by 0) and x^3 must be greater than 36 (since you can't have a negative in a square root so x > 36^(1/3) and x \[\neq\] 9

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

thanx

Not the answer you are looking for?

Search for more explanations.

Ask your own question