• anonymous
a person who starts at the three o'clock position on a ferris wheel with diameter 100 feet travels through 120 degrees. How far have they traveled? What is their height?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
120 degrees = 2pi/3 radians. The arc length is the radius (50 ft.) times the angle , so L= (2/3)pi* R. If the ferris wheel is moving counter clockwise, then we are stopped in quadrant II with 60 degrees to spare before 180 degrees. We know the radius is 50 ft, and the sin of 60 degrees would give us another vertical length for our height. so 50 + sin(60) + however far the bottom of the ferris wheel is situated off the ground, will tell you the height.

Looking for something else?

Not the answer you are looking for? Search for more explanations.