anonymous
  • anonymous
Inverse laplace transform of (.1s+.9)/(s^2+3.24), I know the answer is .1cos(1.8t)+.5sin(1.8t), but I don't know how to get the answer
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
It would help if you would put all the decimals in fraction form... \[\frac{.1s+.9}{s^2+3.24} \rightarrow \frac{\frac{1}{10}s+\frac{9}{10}}{s^2+\frac{81}{25}}\] Now split this in to two....... \[\frac{\frac{1}{10}s+\frac{9}{10}}{s^2+\frac{81}{25}}\rightarrow \frac{1}{10}(\frac{s}{s^2+\frac{81}{25}})+\frac{\frac{9}{10}}{s^2+\frac{81}{25}}\] Factor out a 1/2 form the second equation.... \[\frac{1}{10}(\frac{s}{s^2+\frac{81}{25}})+\frac{1}{2}(\frac{\frac{9}{5}}{s^2+\frac{81}{25}})\] since: \[L[\sin(at)]=\frac{a}{s^2+a^2}, L[\cos(at)]=\frac{s}{s^2+a^2}\] notice that \[\frac{81}{25}=(\frac{9}{5})^2\rightarrow a^2\] \[\frac{1}{10}(\frac{s}{s^2+(\frac{9}{5})^2})+\frac{1}{2}(\frac{\frac{9}{5}}{s^2+(\frac{9}{5})^2})\] Thus the Laplace transform is: \[\frac{1}{10}\cos(\frac{9}{5}t)+\frac{1}{2}\sin(\frac{9}{5}t)\rightarrow .1\cos(1.8t)+.5\sin(1.8t)\]
anonymous
  • anonymous
thanks thats much more helpful than just giving an answer!
anonymous
  • anonymous
sure thing

Looking for something else?

Not the answer you are looking for? Search for more explanations.