• anonymous
Find the volume of the solid generated by revolving the region about the given line. The region in the first quadrant bounded above by the line y=√2, below by the curve y=2sinx, 0≤x≤π, and on the left by the y-axis, about the line y=2.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
I'll give it a try: y=2 sin x, y = sq rt 2; (1) 2 sin x = sq rt 2; therefore x = pi/4. Radius big circle 2, radius small 2 - 2 sin x. Therefore, V = integrand from 0 to pi/4 of (2^2 -[2 - 2 sin x]^2)pi dx. I will ask around tomorrow if I am right. Been a while since I did it. Btw this is washer method.

Looking for something else?

Not the answer you are looking for? Search for more explanations.