evaluate the integral 5/(n(n+9)) from 1 to infinity. Please Help

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

evaluate the integral 5/(n(n+9)) from 1 to infinity. Please Help

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

can anyone help????
maybe partial fractions, but I need help on that part too...
First, you should break up the 5/(n(n + 9)) into two separate fractions. A/n + B/(n + 9) = 5/(n(n+9)) --> A(n + 9) + Bn = 5 Let n = 0 to find A = 5/9 and n = -9 to find B = -5/9. You should find that 5/(n(n + 9)) = 5/(9n) - 5(9(n + 9)). You should be wanting to integrate this: \[\lim_{b \rightarrow \infty}\int\limits_{1}^{b}[5/(9n)-5/(9(n + 9))]dn\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Awww yeah, thats how it's done
Just use some u substitution and your done!
Other than the limit, just use log rules to combine them and it should work out
Factor out a 5/9 to make the calculations somewhat easier: \[(5/9)\int\limits_{1}^{b}[1/n-1/(n+9)]dn\] \[(5/9)[\ln |n|-\ln |n+9|]_{1}^{b}\] \[(5/9)[\ln |b|-\ln |b+9|-\ln1+\ln10]\] \[(5/9)\ln[10|b/(b+9)|]\]
Take the limit as b approaches infinity of the last thing, I got (5/9)*ln10
I think it's e^ of that answer. I don't think you can use L'hospitals rule inside logs, can you?
I didn't use L'Hopital's rule. I divided the top and the bottom of the fraction by b.
yeah... it's just (5/9)ln10
thank you so much, that was so hard for me!
Try wolframalpha.com for these things, if you just want a solution, by the way.
http://www.wolframalpha.com/input/?i=integrate%205%2F(n(n%2B9))%20from%201%20to%20infinity&t=macw01

Not the answer you are looking for?

Search for more explanations.

Ask your own question