anonymous
  • anonymous
How do you find the vector-matrix form of the linear system corresponding to the higher order equation: y'' + a1 y' +a2 y = f
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Just incase anyone wants to know how to solve this type of problem I figured out how: Start by reducing the the equation to a first order system by replacing y with x1, y' with x2 and y'' with x2'. Solve the equation for x2' (equals f-a1 x2- a2 x1). Notice that x1' = x2 =y' solve x'=Ax+b for A and b by using the two equations you derived for x1' and x2'. A should be a matrix [ 0 1] [-a2 -a1] b should be the matrix [0] [f]

Looking for something else?

Not the answer you are looking for? Search for more explanations.