anonymous
  • anonymous
find limit: lim sqrt(x)ln(x) x>0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
0
anonymous
  • anonymous
this requires calculus first, manipulate so it becomes lim(x>0) ln(x)/(sqrt(x))^(-1) then do L'Hopital's rule and take the derivative of top and bottom. you get lim(x>0) (1/x)/(-1/2x^(-3/2))
anonymous
  • anonymous
ugly, but then simplify it to get lim(x>0) -2sqrt(x) that will equal 0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
On first try you get 0 times negative infinity. (Write that down you will see again lim x to zero of ln 0 is negative infinitiy.) However that is indeterminate form: apply l'hopital, try again.

Looking for something else?

Not the answer you are looking for? Search for more explanations.