i need help finding the limit of the sequence (1 + 1/n) ^ n using l'hopitals rule

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

i need help finding the limit of the sequence (1 + 1/n) ^ n using l'hopitals rule

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

the limit as n goes to infinity I assume?
yes sir
I understand taking the ln of it so you get n ln (1+1/n) then you have ln(1+1/n) / 1/n but then i am lost

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

you almost did 75% of the problem
now you're ready to apply the l'hopital's rule, that's taking the derivative of both The numerator and denominator
so the denominator would be -1/x^2
you will get: \[\lim_{n \rightarrow \infty} {\ln (1+1/n) \over 1/n}=\lim_{n \rightarrow \infty} { {-1/n^2 \over 1+1/n} \over -1/n^2}=\lim_{n \rightarrow \infty}{1 \over 1+1/n}\]
which is equal to 1 as you can see.
so the top is 1 / 1 + 1/n and then you take the derivate of the inside of ln (1 + 1/n) right
but this is the limit of the function after taking the ln, so the limit of your original function is e^1
yes you're right!!
awesome thanks bud
no problem.. just be a fan ;)
AnwarA you still there I got another tought one its (1 + 1/sqrt(x))^x
x is approaching what?
infinty again
use the same procedure we did with the first one.
ok so I got to that part I got ( -1/2x ^ 3/2)/ 1 + 1/sqrt(x) / -1/x^2 but it doesnt look good to simplify to me
you should use parentheses.

Not the answer you are looking for?

Search for more explanations.

Ask your own question