anonymous
  • anonymous
find the exact value of tan x/2, givin that sin x=8/17 and 90degrees
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dumbcow
  • dumbcow
For this problem you need to use your trig half-angle formulas sin(x/2) = sqrt((1-cosx)/2) cos(x/2) = sqrt((1+cosx)/2) tanx = sinx/cosx so tan(x/2) = sin(x/2)/cos(x/2) ->tan(x/2) = sqrt((1-cosx)/2) / sqrt((1+cosx)/2) But now the function is defined in terms of cosx and we are given value of sinx so we use a trig identity sin^2 + cos^2 = 1 -> cosx = sqrt(1-sinx^2) -> cosx = sqrt(1-(8/17)^2) = sqrt((17^2-64)/17^2) = 15/17 sub that into the above equation for cosx with a little simplifying ->tan(x/2) = sqrt(1/17) / sqrt(16/17) = (1/sqrt(17))*(sqrt(17)/sqrt(16)) = 1/4
dumbcow
  • dumbcow
actually tan(x/2) = -1/4 due to restrictions on x remember 1/sqrt(16) = +-(1/4)

Looking for something else?

Not the answer you are looking for? Search for more explanations.