anonymous
  • anonymous
Solve the separable differential equation dy/dx=(x-10)e^(-y), given the initial conditions y(2)=ln(2), to find y(0)
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
Solve the separable differential equation dy/dx=(x-10)e^(-y), given the initial conditions y(2)=ln(2), to find y(0)
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
wouldn't you jut use implicit differentiation and then substitute?
anonymous
  • anonymous
ok first you find a diff of y=ln(x), and replace in the equation, is most easy, sorry i dont have a good english
anonymous
  • anonymous
\[dy = (x-10)dx*e^-(x)\] \[e^y*dy = (x-10)dx\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
then integrate both sides
anonymous
  • anonymous
I'm not sure I understand. In my answer I used partial derivatives, but I'm not sure how I got the answer when I did it previously...
anonymous
  • anonymous
fxx(x,y)=6x and fyy(x,y)=2 and fxy(x,y)=-6, and I got D=6x(2)-(-6)^2=12x-36 which is the answer... but I don't know where I got 6x(2)-(-6)^2 from previously.
anonymous
  • anonymous
^Sorry, the above post was meant for a different question.
anonymous
  • anonymous
Frayar22, do you mean differentiate y=ln(x) ... y=1/x? I don't get it :(
anonymous
  • anonymous
sorry , i have a mistake sorry forgive all i say (sorry for my bad englsih)

Looking for something else?

Not the answer you are looking for? Search for more explanations.