anonymous
  • anonymous
Linear Algebra: Let P2(R) denote the vector space of polynomials of degree less than or equal to 2. Let W = { p(x) in P2(R) | p(x) = p(2-x) }. Find a basis for P2(R) that contains a basis for W.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
p(x)=p(2-x) We can write an arbitrary element of P2(R) in the form \[p(x)=ax^2+bx+c\textrm{, where }a,b,c\in\mathbb{R}.\] The condition for the element of W is \[ax^2+bx+c=p(x)=p(2-x)=a(2-x)^2+b(2-x)+c.\] Expand both sides and you'll find that \[\begin{array}{rcl} b&=&-4a-b\\ c&=&4a+2b+c\\ \end{array}\] The solution: \[a\in\mathbb{R},\quad b=-2a,\quad c\in\mathbb{R}.\] So dim(W)=2. A basis for W is: \[e_1(x)=1,\quad e_2(x)=x^2-2x.\] To extend these two vectors to a basis of P2(R) you'd just need to use the vector \[e_3(x)=x.\]
anonymous
  • anonymous
great answer thanks! but I got the basis to be : \[e _{1} = 1 , e _{2} = -x + 2 , e _{3} = x^2 - 4x + 4 \] Does that look right??
anonymous
  • anonymous
It' almost OK, there is only one problem. In e_3 the coefficient of x^2 is 1 and because of that the coefficient of x must be -2 NOT -4. So your basis should be \[e_1=1,\quad e_2=-x+2,\quad e_3=x^2-2x+4\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.