why does 1/x diverge while 1/x^2 converge and does 1/x^3 converge too?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

why does 1/x diverge while 1/x^2 converge and does 1/x^3 converge too?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Because x^-1 always makes an unfriendly number. Anything like x^-a where a > 1 will make friendly numbers which always converge.
Do you know about p series? If you have a series of 1/(x^p), it is a p-series. Basically in a p-series, if p is greater than one, it converges, and if p is less than or equal to one, it diverges.
thanks john i just wasnt quite sure. do u guys know the difference between a geometric and harmonic series? how do you id them thnks

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

In a geometric series, \[\sum_{n=1}^{infty} 1/n\] Is a harmonic series, while \[\sum_{n=0}^{\infty} a1 * r^n \] Is a geometric series. A harmonic series is just a series with an increasing denominator with each term. A geometric series has a constant ratio between each term, r.

Not the answer you are looking for?

Search for more explanations.

Ask your own question