anonymous
  • anonymous
In Lecture 6, Mr. David Jerison talks about natural logs, and presents to us: w=ln(x) so e^w=x, (d/dx)e^w=(d/dx)x=1, so [(d/dx)e^w](dw/dx)=1 This implies (dw/dx)=1. How so, and how did he even arrive at this conclusion?
OCW Scholar - Single Variable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
You missed a step. He simplified the (d/dx)e^w to simply e^w. It went something like this: w=lnx e^w=x (d/dx)e^w=(d/dx)x So here we know we have to chain rule the e^w. e^w(dw/dx)=1 (dw/dx)=1/(e^w) Just substitute back the x (dw/dx)=1/x
anonymous
  • anonymous
The way he wrote it was a bit weird for me too.
anonymous
  • anonymous
Oh so is it kind of like \[(dx/dx)e^w*(dw/dx) \] and the (dx/dx) cancels out?

Looking for something else?

Not the answer you are looking for? Search for more explanations.