anonymous
  • anonymous
Can someone please help with this question Find the closest point on the line y=2x to (1,0)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
the closest point between two spots is a straight line that is perpendicular to it. right?
anonymous
  • anonymous
yes
amistre64
  • amistre64
then lets make a line perpendicular to this one the crosses thru the point (1,0)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
then where those lines meet is the nearest point right?
amistre64
  • amistre64
y = 2x; y = (-1/2)x is perpendicular to it.
amistre64
  • amistre64
0 = (-1/2)(1) + b 0 = -1/2 + 1/2 our equation is going to be y = (-1/2)x + 1/2
amistre64
  • amistre64
now where do these two equations meet up? y = 2x y = (-1/2)x + 1/2 2x = (-1/2)x + 1/2 2x + (1/2)x = 1/2 (5/2)x = 1/2 ---- --- 5/2 5/2 x = 1/5 the nearest point is: (1/5 , 2,5)
amistre64
  • amistre64
(1/5 , 2/5) if I can type today :)
amistre64
  • amistre64
y = (-1/2)(1/5) + 1/2 y = -1/10 + 5/10 y = 4/10 = 2/5 that chacks out good :)
amistre64
  • amistre64
you agree?
anonymous
  • anonymous
yes I do
amistre64
  • amistre64
good :) but I hope you do so because its right, and not becasue I said so ;)
anonymous
  • anonymous
Thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.