anonymous
  • anonymous
. Suppose f(x)>0 for all x in (0,10). Express the area under the curve f(x) for 0<=x<=10 as the limit of a sum, using the value of f(x) at right endpoints of your intervals.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
so im guessing ur in calc 1 uni?
amistre64
  • amistre64
[E]{i=0,10} f(xi) (/\x)i ??
amistre64
  • amistre64
\[\sum_{i=0}^{10}f(\xi) \Delta \xi\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
thats correct amistre.
anonymous
  • anonymous
writting that for rmur. thats how u do it.
amistre64
  • amistre64
yay!! its been so long since I had to recall that lol
amistre64
  • amistre64
i dont know why it came up squirrely in the other way :/
anonymous
  • anonymous
lol!, i had a couple problems like that in my multiple choice of my calc exam...old stuff!
anonymous
  • anonymous
ya weird but its all good, cuz the concept behind it is there :P
anonymous
  • anonymous
thanks, yes its cal 1 review for finals

Looking for something else?

Not the answer you are looking for? Search for more explanations.