anonymous
  • anonymous
rationalize denominator : please help 1.) 4/ sqrt. 7p 2.) srqt.98/x 3.) 9/3 sqrt.y 4.) sqrt.7 / sqrt.5 +7
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1.) 4/7p−−√ 2.) 98−−√/x 3.) 9/3y√ 4.) 7√/5√+7
anonymous
  • anonymous
\[1.) 4/\sqrt{7p}\]
anonymous
  • anonymous
2.) \[\sqrt{98}/x\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
The denominator is not supposed to have a square root. So when you rationalize you get rid of the square root in the denominator by multiplying the numerator and denominator by the square root, which is essentially multiplying by 1 so it doesnt change the value of the expression.
anonymous
  • anonymous
3.) \[9/^{3}\sqrt{y}\]
anonymous
  • anonymous
4.) \[\sqrt{7} / \sqrt{5} + 7\]
dumbcow
  • dumbcow
haha thats why its a cubed root, not 9/3
anonymous
  • anonymous
yes i sent you the correction in the other post
anonymous
  • anonymous
xavier : so i take out the sqrt ?
anonymous
  • anonymous
LIke for 4/sqrt(7p). Multiply the numerator and denominator by sqrt(7p). So the denominator gets "rationalized" because sqrt(7p)*sqrt(7p) is simply 7p.
anonymous
  • anonymous
so the answer would be : 4 sqr.7p ? or 4sqrt.7p/7p ?
anonymous
  • anonymous
or ?
anonymous
  • anonymous
4sqrt(7p)/7p
anonymous
  • anonymous
and fot the second one ? would it be 7sqrt.2x ? or 7sqrt. 2/x ?
anonymous
  • anonymous
\[7 \sqrt{2x} , 7 \sqrt{2/x}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.