The graph of the derivative of a linear function is a parabola a straight line parallel to the x-axis a straight line parallel to the y-axis ............................

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

The graph of the derivative of a linear function is a parabola a straight line parallel to the x-axis a straight line parallel to the y-axis ............................

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

hold on..... how to do dis type of quesn....... \[x ^{x ^{}}\]
linear function defined as y = mx+b _ > dy/dx = m m is constant and graph of constant is a straight horizontal line
*...........\[x ^{x ^{x}}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

thnx dumbcow......
\[\text{Let } y = x^x \] \[\implies \ln y = x \ln x \] And differentiate implicitly. Same applies to higher powers, just repeat.
You could also write \[x^x = e^{\ln x^x} = e^{x \ln x} \]
got it!!!!!!!!
how to do dis 1........\[x ^{^{x ^{x}}}\]
sorry but i m unable 2 understand
\[\text{Let } y = x^x \] \[\implies \ln y = x \ln x \implies \frac{1}{y}\frac{\mathbb{d}y}{\mathbb{d}x} = \ln x + 1 \] \[\implies \frac{\mathbb{d}}{\mathbb{d}x} x^x = x^x(\ln x+1) \] \[\text{Now let } z = x^{x^x} \] \[\implies \ln z = x^x \ln x\ \implies \frac{1}{z}\frac{\mathbb{d}z}{\mathbb{d}x} = \frac{\mathbb{d}}{\mathbb{d}x} x^x \cdot \ln x + \frac{\mathbb{d}}{\mathbb{d}x} \ln x \cdot x^x \] But from above we know \[ \frac{\mathbb{d}}{\mathbb{d}x} x^x = x^x(\ln x+1) \] \[\implies \frac{1}{z}\frac{\mathbb{d}z}{\mathbb{d}x} = x^x \left( \ln x \cdot (\ln x + 1) + \frac{1}{x} \right) \] \[\implies \frac{\mathbb{d}}{\mathbb{d}x} x^{x^x} = x^{x^x}\left[ x^x \left( \ln x \cdot (\ln x + 1) + \frac{1}{x} \right) \right] \] Sorry for any typos.
Similarly \[ \frac{\mathbb{d}}{\mathbb{d}x} x^{x^{x^{x}}} = x^{x^{x^{x}}} \left[ x^{x^x}\left[ \ln x \left( x^x \left( \ln x \cdot (\ln x + 1) + \frac{1}{x} \right)\right) + \frac{1}{x} \right] \right] \] It is left to the readers to generalise this for \[x^{x^{x^{x^{x^{x^{x^{.^{.^{.}}}}}}}}} \]

Not the answer you are looking for?

Search for more explanations.

Ask your own question