anonymous
  • anonymous
Please check if this is a true statement. In order to aproximate a tangent line, I would take the dervitive and pick a known point (x,y) then sub in my x value. then put in into point slope right? Asking because i have to write 3 questions and provide answers Thanks
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
anyone?
amistre64
  • amistre64
this one? eh
anonymous
  • anonymous
yes sir

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
by "approximate" a tangent line are you wnating to find the equation that will match the tangent you get from the derivative?
amistre64
  • amistre64
if you have a function f(x) and want to know the equation of the tangent line at any given point: then y = f'(x)(x) + b will suffice. right?
anonymous
  • anonymous
That is what i am guessing he ment by it but i am not 100% sure he seems to be kinda cryptic at times. I was kinda wondering if it's a standard operation and if so thats how you would figure it out.
amistre64
  • amistre64
suppose we take f(x) = 3x^2 f'(x) = 6x at any point given and will produce the slope of the tangent. this f'(x) substitutes into the normal equation of the line and you use the (x,y) point as the values to calibrate your new equation.
anonymous
  • anonymous
sounds good thanks for the help
amistre64
  • amistre64
so the equation of the tangent at (4,48) becomes: 48 = 6(4)(4) + B 48 = 96 + B -48 = B y = (6x)x - 48
amistre64
  • amistre64
for that particular point at (4,48). youre welcome :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.