for what type of function will {g(f(x))}and {f(g(x))} both equal to x? explain.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

for what type of function will {g(f(x))}and {f(g(x))} both equal to x? explain.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

When one is the inverse of the other.
y
Take the first case, g(f(x)). You take x and f maps it to f(x). You're wanting g now such that g will take that result and send it back to x (i.e. undo the operation). The function that will do that is the inverse of the original function.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

This is the definition of an inverse function.
Example, \[f(x)=e^x , g(x) = \ln x\]then\[f(g(x))=e^{\ln x}=x\]by definition of logarithm, and\[g(f(x))=\ln e^x = x \ln e = x \]by log laws. The two functions,\[f(x)=e^x , g(x)=\ln x\]are inverse to each other. There is an infinity of such functions.

Not the answer you are looking for?

Search for more explanations.

Ask your own question