anonymous
  • anonymous
A rectangular box is to be inscribed inside the ellipsoid 2x^2+y^2+4z^2=12. What is the largest possible volume for the box?
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Equation of the ellipsoid: \[2x ^{2}+y ^{2}+4z ^{2}=12\]
anonymous
  • anonymous
Equation of the ellipsoid: \[2x ^{2}+y ^{2}+4z ^{2}=12\]
anonymous
  • anonymous
Well, the width of the box = 2x, the height = 2z, the length = 2y. The volume = length*width*height. You can take the derivative of the volume and find the critical points once you eliminate one of the three variables by substituting it for the others using the constraining equation given by your ellipsoid.

Looking for something else?

Not the answer you are looking for? Search for more explanations.