Determine whether the planes are parallel, perpendicular or neither. If neither find the angle between them. x+4y-3z=1, -3x-12y+6z=1

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Determine whether the planes are parallel, perpendicular or neither. If neither find the angle between them. x+4y-3z=1, -3x-12y+6z=1

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

The normal vectors are \[n_1=(1;4;-3),\quad n_2=(-3;-12;6).\] The dot product of n_1 and n_2 \[n_1\cdot n_2=1\cdot(-3)+4\cdot(-12)+(-3)\cdot 6=-69.\] The cosine of the angle between them is \[\cos\theta=\frac{n_1\cdot n_2}{|n_1|\cdot|n_2|}=\frac{-69}{\sqrt{26}\sqrt{189}}\approx -0.984309\] So \[\theta\approx 169.84^\circ\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question