anonymous
  • anonymous
Find all the vectors n= (a,b,c) which are perpendicular to both vectors r1 and r2. r1=(3,7,8) r2=(1,8,1)
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
You can find these vectors by taking the cross product of r1 and r2. Solution: The cross product of r1 and r2 is \[r_1\times r_2=\left|\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\3&7&8\\1&8&1\end{array}\right|=(7-64)\hat{i}-(3-8)\hat{j}+(24-7)\hat{k}=\] \[-57\hat{i}+5\hat{j}+17\hat{k}=(-57;5;17).\] So the vectors that are perp. to r1 and r2: \[\{(-57t;5t;17t;)\mid t\in\mathbb{R}\}.\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.