anonymous
  • anonymous
Determine the solution to the initial value differential equation: 3y'-5y=e^(2x), y(0)=13
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Use undetermined coefficients or variation of paramaters
anonymous
  • anonymous
Get the equation in the form y' -5/3*y=e^(2x)/3, then get the multiply both sides by the integrating factor e^(-5x/3) to get \[(e ^{-5x/3}*y)'=1/3*e^{2x}*e^{-5x/3} \rightarrow (e ^{-5x/3}*y)' = 1/3*e^{x/3}\] All you have to do next is take the antiderivative of both sides and then divide both sides by \[e^{-5x/3}\]
anonymous
  • anonymous
oh oops, nevermind what i said thought it was 3y'' lol jprahman is right

Looking for something else?

Not the answer you are looking for? Search for more explanations.