anonymous
  • anonymous
find the point(s) on the parabola x=y^2 closest to the point (0,3)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
the closest point to any spot is perpendicular to it......right?
amistre64
  • amistre64
lets take the top part of this; y = sqrt(x) does fine...
amistre64
  • amistre64
the slope of the line of the derivative and the perpendicular line passsing thru (0,3) need to be minimized.....

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
y = [1/(2sqrt(x))]x +b 0 = -6sqrt(3) + b b = 6sqrt(3) x y = --------- + 6sqrt(3) 2sqrt(x) .....................and................ y = sqrt(x) x sqrt(x) = --------- + 6sqrt(3) 2sqrt(x) x sqrt(x) - --------- = 6sqrt(3) 2sqrt(x) x 2(sqrt(x))sqrt(x) - --------- = 6sqrt(3) 2sqrt(x) 2x - x --------- = 6sqrt(3) 2sqrt(x)
amistre64
  • amistre64
I sure hope this is right lol x = 12sqrt(3x) x/12 = sqrt(3x) (x/12)^2 = 3x (1/144)x^2 -3x = 0 x((1/144)x - 3) = 0 x = 0 or x= 3/144 = 1/46
amistre64
  • amistre64
we know the distance between 0 and 3 =3, so lets do some tests with numbers close to 1/46. (1/46, sqrt(1/46)) (0,3) sqrt[ (0-1/46)^2 + (3-sqrt(1/46))^2) ] = 2.85264
amistre64
  • amistre64
when x = 1/45.9 we get: (0,3) (1/45.9,sqrt(1/45.9)) sqrt[ (1/45.9 -0)^2 + (sqrt(1/45.9) -3)^2 ] = 2.85248072 x.xxx64088 < x.xxx48072
amistre64
  • amistre64
at x = 1/46.1 we get this: 2.85280052 x.xxx80052 x.xxx64088
amistre64
  • amistre64
great, now I gotta figure out what I did wrong lol....thanx :)
amistre64
  • amistre64
1/2 > 1/3 so the bigger the number on the bottom, the smaller it gets.....
amistre64
  • amistre64
.500 > .333 so the smaller the decimal is, the smaller the number.....
amistre64
  • amistre64
x.xxx80052 > x.xxx64088 x.xxx64088 > x.xxx48072 so we need to work to smaller x values.... maybe
amistre64
  • amistre64
hah!!.. writing it on paper is so much easier lol... x = 9 or x = 1 at x = 9 y = 3 ....................... (0,3) (9,3) sqrt( [9-0]^2 + [3-3]^2) = 9 ........................................... (0,3) (1,1) sqrt([1-0]^2+[1-3]^2) sqrt(1 + 4) = sqrt(5) sqrt(5) = 2.2360679774997896964091736687313 the poits should be (1,1) and (1,-1)

Looking for something else?

Not the answer you are looking for? Search for more explanations.