Find the integral:

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the integral:

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

t^2 + 4 / t^3 +12t +8 dt
Do you know how an integral works?
They confuse me.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Is it \[\int\limits_{}^{}{t^2+4 \over t^3+12t+8} dt?\]
@AnwarAL it is what you posted. I think you can do u-substition for the integral.
OK let's call the integral I .. if you look closely you will see that The numerator is the derivative of the denominator after multiplying it (The numerator) by 3.. SO, multiply The numerator by 3 and divide outside the integral by 3, you get: \[I={1 \over 3}\int\limits_{}^{}{3t^2+12 \over t^3+12t+8}dt\] now you can see that The numerator is exactly the derivative of the numerator, then: \[I={1 \over 3} \ln \left| t^3+12t+8 \right|+c\]
you can do substitution u=t^3+12t+8 as smorlaz said.. the way I used looks faster and easier to me. They both lead to the same result.
does that make sense to you?
Wait a minute, why can't you just seperate the terms and integrate individually?
Or did I read the problem incorrectly?
^^ I think you did :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question