anonymous
  • anonymous
Find the angle between the vectors u and v if u = (1, 2) and v = (- 4, - 2). Round answer to two decimal places. A.141.20o B.141.89o C. 143.13o D. 144.09o E. 144.54o
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
nowhereman
  • nowhereman
use scalarproduct and acos
anonymous
  • anonymous
ok well I don't know what scalarproduct is but I have cosθ=u.v/IIuII IIvII
nowhereman
  • nowhereman
yes, that u.v is the scalarproduct.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
the angle between vector is cool....
amistre64
  • amistre64
u.v ---- |u||v|
amistre64
  • amistre64
<1,2> . <-4,-2> = -4 + -4 = -8 ------------------------- --- sqrt(5) sqrt(20) = sqrt(100) = 10 cos(t) = -4/5
amistre64
  • amistre64
t = cos^-1(-4/5)
amistre64
  • amistre64
t = 143.13
amistre64
  • amistre64
ive been reading about vectors allll week ;)
amistre64
  • amistre64
and that is the extent of my knowledge so far lol
anonymous
  • anonymous
Thank you this actually make's sense too... I was missing the t=cos^-1(-4/5)
amistre64
  • amistre64
your welcome ;)

Looking for something else?

Not the answer you are looking for? Search for more explanations.