the three sides of a right triangle are consecutive even integers. what is the length of each side?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

the three sides of a right triangle are consecutive even integers. what is the length of each side?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

side 1 = x (hypt.) side 2 = x + 2 side 3 = x + 4 (x + 2)^2 + (x + 4)^2 = x^2 x^2 + 4x + 4 + x^2 + 8x + 16 = x^2 x^2 + 12x + 20 = 0 (x + 10)(x + 2) = 0 i'm not sure why i ended up with negatives...but we can say that since this is length it has to be positive so you have 10 and 2 as your answer but since we said that 10 is the hypt. it has to be the longest side. so it must be 10 so the sides are 6, 8, and 10
\[(x-2)^2+x^2=(x+2)^2\] \[x^2-4x+4+x^2=x^2+4x+4\] \[x\cdot(x-8)=0\] x=8 sides: 6 ,8 ,10

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question