anonymous
  • anonymous
Find the slope-predictor formula and write an equation for the line tangent to (a, f(a)) for f(x) = x^2 - 6x + 4. And can you please give me details of how you got the answer so that I ca uderstand it please?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
The slope-predictor function is also known as the derivative function. It is defined as\[f'(x) = \lim_{\delta x \rightarrow 0}\frac{f(x+\delta x)-f(x)}{\delta x}\]which comes from considering the slope of a secant between two points on a function, f(x), between x and x+delta x (I'm going through everything from the beginning since I only ever see 'slope-predictor' mentioned when definitions are used). Here,\[f(x)=x^2-6x+4\]and so by the definition,\[f'(x)=\lim_{\delta x \rightarrow 0}\frac{[(x+\delta x)^2-6(x+\delta x)+4]-[x^2-6x+4]}{\delta x}\]\[=\lim_{\delta x \rightarrow 0}\frac{x^2+2x \delta x+(\delta x)^2-6x-6\delta x+4-x^2+6x-4}{\delta x}\]\[=\lim_{\delta x \rightarrow 0}\frac{(2x-6) \delta x+(\delta x)^2}{\delta x}\]\[=\lim_{\delta x \rightarrow 0}(2x-6+\delta x)\]\[=2x-6\]
anonymous
  • anonymous
This formula gives you the slope of the tangent to any point x on your function, f(x). So, at the point (a,f(a)), the slope is\[m=2a-6\]The equation of the line tangent to the function at this point is therefore given by the point-slope formula for a straight line:\[y-y_1=m(x-x_1) \rightarrow y-f(a)=(2a-6)(x-a)\]or\[y=(2a-6)(x-a)+f(a)\]
anonymous
  • anonymous
You can use the fact that\[f(a)=a^2-6a+4\]to then write,\[y=(2a-6)(x-a)+a^2-6a+4\]and expand and simplify to obtain,\[y=-a^2+2ax-6x+4\]or better,\[y=(2a-6)x+4-a^2\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.