Evaluate the integral from -infinity to infinity of [(t^2+5t)*dirac(t-2)dt]

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Evaluate the integral from -infinity to infinity of [(t^2+5t)*dirac(t-2)dt]

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

14
Wiki says that the intergral from -infinity to infinity of f(t)dirac(t-T)dt is equal to f(T). So i guess if you distribute and split up the integral it becomes (2)^2+5(2)=14
What type of couse is this for? Just curious

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Darn, I was going about it all wrong lol.. And it's for a linear algebra/differential equations class
Seems interesting
In my textbook it's talking about how dirac(t) = lim h -> 0 [g(h(t)] and then you plug it into the general equation, but I don't really get the whole limit part
oops, it's supposed to be g sub h of t
What function is g sub h?
oh whoops, I forgot to add that part, it's a heavyside function. g sub h = (1/h)[H(t)-H(t-h)]
The limit part. I guess the dirac function is the derivative of the heavyside
If "dirac" is the DiracDelta function then, \[\int\limits _{-\infty }^{\infty }\left(5 t+t^2\right) \delta (-2+t)dt=14 \] Browse over to WolframAlpha.com and paste in the following: Integrate[(t^2 + 5 t) DiracDelta[-2 + t], {t, -Infinity, Infinity}]
Sorry about the double posting. Using Firefox and it seems to have a hair trigger.

Not the answer you are looking for?

Search for more explanations.

Ask your own question