anonymous
  • anonymous
Please help me ... limit to infinity of ln (n+1) / ln n
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
use l'hopital's rule here ^_^: \[\lim_{x \rightarrow \infty} {\frac{1}{n+1}}(n) = \lim_{x \rightarrow \infty} \frac{n}{n} = 1\] ^_^
anonymous
  • anonymous
did you understand it? :)
anonymous
  • anonymous
so, Ln (n + 1) / Ln n = Ln [(n+1) / n] , right or wrong? I don't have any clue.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Since you have something in the form of \(\infty/\infty\) you need to use l'Hopital's rule. Which is that the limit of the original ratio is the limit of the ratio of the derivatives. if \((\lim_{n \rightarrow \infty} f(n)= \lim_{n \rightarrow \infty} g(n)) \in \{\infty,0\} \) \[\lim_{n \rightarrow \infty}\frac{f(n)}{g(n)} = \lim_{n \rightarrow \infty} \frac{f'(n)}{g'(n)}\] The derivative of ln(n) = \(\frac{1}{n}\) The derivative of ln(n+1) = \(\frac{1}{n}\) So the ratio of the derivatives will be \[\frac{\frac{1}{n}}{\frac{1}{n}} = \frac{n}{n} = 1\] And the \(\lim_{n \rightarrow \infty} 1 = 1\)
anonymous
  • anonymous
Thanks for your help :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.