{(1/sqrt(2))^n} from n=0 to infinity; is the series convergent or divergent? if convergent, why? and sum?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

{(1/sqrt(2))^n} from n=0 to infinity; is the series convergent or divergent? if convergent, why? and sum?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I'm thinking this is a p series. Now what is p?
its from my chapter on geometric series/nth term test for divergence
It's a geometric series right. Its in the form a+ar+ar^2+ar^3+ar^4+...where a=1 and r=(1/sqrt(2)) When abs(r)<1 this series converges to a/(1-r) We can use the ratio test to check: Let x=(1/sqrt(2)) Then lim n->inf [x^(n+1)]/[x^n]=x Since x<1 we know it converges

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

they figure it converges to 2 + sqrt(2), how did they get there?
As said it converges to a/(1-r) where a=1 and r=(1/sqrt(2)) Substituting those you get 2+sqrt(2)
guess im having trouble with the algebra, whats the best way to approach 1- (1/sqrt2)?
1/[1-(1/sqrt(2))] 1/[(sqrt(2)-1)/sqrt(2)] sqrt(2)/[sqrt(2)-1] Then rationalize the denominator by multiplying the top and bottom by -sqrt(2)-1.
Or you could always start off by rationalizing the numerator and denominator by multiplying top and bottom by (1+(1/sqrt(2))
i worked through your first suggestion, all makes sense up to the rationalize the denominator part, why -sqrt(2)-1? so far your a life saver though, thanks!
Glad i can help. So the denominator you get is sqrt(2)-1. When you multiply by -sqrt(2)-1 you get rid of the sqrt(2). Kind like how complex conjugates work. Foil it out and see.
heh, still doing something wrong, i get {-2-sqrt(2)}/{-2-sqrt(2)+sqrt(2)+1} =/
got it finally, thanks
Np

Not the answer you are looking for?

Search for more explanations.

Ask your own question