anonymous
  • anonymous
determine whether the series riemann sum from k=1 to infinityy of (k!)^2/k^(2k+1) converges
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dumbcow
  • dumbcow
it converges to about 1.144
anonymous
  • anonymous
how do you figure it out though?
dumbcow
  • dumbcow
i probably cant help you there, at least proving it mathematically i used more of an analytical approach i just plugged in the numbers on excel and got to the 80th term before the factorial blows up to infinity sorry

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
that's ok, thank you
anonymous
  • anonymous
factorials usually a hint for ratio test

Looking for something else?

Not the answer you are looking for? Search for more explanations.