anonymous
  • anonymous
how do you solve 2+4x+x square=0 and getting the answers -0.59, -3.41
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
combine like terms: 2 +4x +x = 0.....x square?
amistre64
  • amistre64
x^2 + 4x + 2 = 0 -2 +- sqrt(2)
anonymous
  • anonymous
yes x square i dont know how to write the little two on the top

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
the 6 button has a caret if your shift it :) x^2
anonymous
  • anonymous
ok.. so how do i get the answers -0.59 and -3.41 by doing this equation???
anonymous
  • anonymous
\[x^2+4x+2=0\] is a quadratic equation ( a polynomial of second degree).. The discriminant is \[Δ=4^2-4*1*2=8\] so the roots are \[x_1=(-4+\sqrt{Δ})/(2*1)=-0.59\] and \[x_2=(-4-\sqrt{Δ})/(2*1)=-3.41\] For more information try: http://en.wikipedia.org/wiki/Quadratic_equation
anonymous
  • anonymous
I should add that when you have a quadratic equation \[ax^2+bx+c=0\] the discriminant is \[Δ=b^2-4ac\] and the roots are \[x1=(-b+\sqrt{Δ})/2a\] and \[x2=(-b-\sqrt{Δ})/2a\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.